Moment estimation for ergodic diffusion processes
نویسنده
چکیده
We investigate the moment estimation for an ergodic diffusion process with unknown trend coefficient. We consider nonparametric and parametric estimation. In each case, we present a lower bound for the risk and then construct an asymptotically efficient estimator of the moment type functional or of a parameter which has a one-to-one correspondence to such a functional. Next, we clarify a higher order property of the moment type estimator by the Edgeworth expansion of the distribution function.
منابع مشابه
Infinite horizon asymptotic average optimality for large-scale parallel server networks
We study infinite-horizon asymptotic average optimality for parallel server networks with multiple classes of jobs and multiple server pools in the Halfin–Whitt regime. Three control formulations are considered: 1) minimizing the queueing and idleness cost, 2) minimizing the queueing cost under a constraints on idleness at each server pool, and 3) fairly allocating the idle servers among differ...
متن کاملMoment Inequalities for Supremum of Empirical Processes of U-Statistic Structure and Application to Density Estimation
We derive moment inequalities for the supremum of empirical processes of U-Statistic structure and give application to kernel type density estimation and estimation of the distribution function for functions of observations.
متن کاملAsymptotic Theory of Semiparametric Z-estimators for Stochastic Processes with Applications to Ergodic Diffusions and Time Series
This paper generalizes a part of the theory of Z-estimation which has been developed mainly in the context of modern empirical processes to the case of stochastic processes, typically, semimartingales. We present a general theorem to derive the asymptotic behavior of the solution to an estimating equation θ Ψn(θ, ĥn) = 0 with an abstract nuisance parameter h when the compensator of Ψn is random...
متن کاملEstimation for Misspecified Ergodic Diffusion Processes from Discrete Observations
Abstract. The joint estimation of both drift and diffusion coefficient parameters is treated under the situation where the data are discretely observed from an ergodic diffusion process and where the statistical model may or may not include the true diffusion process. We consider the minimum contrast estimator, which is equivalent to the maximum likelihood type estimator, obtained from the cont...
متن کاملSharp Adaptive Estimation of the Drift Function for Ergodic Diffusions
The global estimation problem of the drift function is considered for a large class of ergodic diffusion processes. The unknown drift S(·) is supposed to belong to a nonparametric class of smooth functions of order k ≥ 1, but the value of k is not known to the statistician. A fully data-driven procedure of estimating the drift function is proposed, using the estimated risk minimization method. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008